Gerbil middle-ear sound transmission from 100Hzto60kHz
نویسندگان
چکیده
منابع مشابه
Middle ear forward and reverse transmission in gerbil.
The middle ear transmits environmental sound to the inner ear. It also transmits acoustic energy sourced within the inner ear out to the ear canal, where it can be detected with a sensitive microphone as an otoacoustic emission. Otoacoustic emissions are an important noninvasive measure of the condition of sensory hair cells and to use them most effectively one must know how they are shaped by ...
متن کاملOssicular motion related to middle ear transmission delay in gerbil.
The middle ear transmits sound efficiently from the air in the ear canal (EC) to the fluid filled cochlea. In gerbil, middle ear transmission produces a constant pressure gain between the EC and the cochlea of ∼25 dB from 2 to 40 kHz, and a delay-like phase corresponding to a ∼25-30 μs delay. The mechanisms by which the air-born signal is collected and delivered to the cochlea are not thoroughl...
متن کاملAnalyzing reverse middle-ear transmission: noninvasive Gedankenexperiments.
The phenomenological framework outlined in the companion paper [C. A. Shera and G. Zweig, J. Acoust. Soc. Am. 92, 1356-1370 (1992)] characterizes both forward and reverse transmission through the middle ear. This paper illustrates its use in the analysis of noninvasive measurements of middle-ear and cochlear mechanics. A cochlear scattering framework is developed for the analysis of combination...
متن کاملA study of sound transmission in an abstract middle ear using physical and finite element models.
The classical picture of middle ear (ME) transmission has the tympanic membrane (TM) as a piston and the ME cavity as a vacuum. In reality, the TM moves in a complex multiphasic pattern and substantial pressure is radiated into the ME cavity by the motion of the TM. This study explores ME transmission with a simple model, using a tube terminated with a plastic membrane. Membrane motion was meas...
متن کاملContribution of the incudo-malleolar joint to middle-ear sound transmission.
The malleus and incus in the human middle ear are linked by the incudo-malleolar joint (IMJ). The mobility of the human IMJ under physiologically relevant acoustic stimulation and its functional role in middle-ear sound transmission are still debated. In this study, spatial stapes motions were measured during acoustic stimulation (0.25-8 kHz) in six fresh human temporal bones for two conditions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Acoustical Society of America
سال: 2008
ISSN: 0001-4966
DOI: 10.1121/1.2932061